Comprehending as with ease as current even more than new will allow each success. next-door to, the notice as well as comprehension of this nonlinear waves and weak turbulence with applications to geophysics and oceanography progress in nonlinear differential equations and their applications could add your near connections listings. This is just one of the solutions for you to be successful. As understood, finishing does not get you fabulous points.
Dispersive Structures and Weak Turbulence - 2014-06-25

The book focuses on the study of the behavior of a fluid with potential instability density stratification in the presence of a gradient of field of gravity. This text then explains the theoretical description of the dynamics of the system. The book includes several examples of how such simplified models can be derived, complicating the picture progressively to account for other phenomena. This book deals with the study of nonlinear behavior of these systems and the theoretical solutions of the turbulent structures.

Introduction to Nonlinear Dynamics - 1993-06-23

This is a text designed to address three main questions that anyone interested in the study of nonlinear dynamics should ask and ponder over. It is written for graduate students and researchers who have some background in physics, mathematics, or engineering. It is divided into two major parts. Part I deals with the coherent nonlinear phenomena, while Part II discusses the turbulent nonlinear phenomena.

Wave Turbulence Under Parametric Excitation - Victor S. L'vov - 2012-12-06

Wave Turbulence is a state of a system of many simultaneously excited and interacting waves characterized by an energy distribution which is not in any sense close to a Gaussian or to a polynomial density of states. It is not caused by a strong external periodic modulation, such as a laser beam, microwave or radio wave, but by small-scale processes in the internal environment of the system. Wave turbulence is characterized by the presence of energy transfer among very disparate scales. Understanding these energy transfers is crucial in order to predict the response of large systems, such as the atmosphere and the ocean, to external forcings and dissipation mechanisms which act on scales decades apart. The field of wave turbulence attempts to understand the average behavior of large ensembles of waves, subjected to forcing and dissipation at opposite ends of their spectrum. It does so by studying individual mechanisms for energy transfer, such as resonant triads and quartets, and attempting to draw from them effects that should not survive averaging. This book presents the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Dispersive Wave Turbulence held at Mt. Holyoke College (MA). It brings together a group of researchers from many corners of the world, in the context of a perceived renaissance of the field, driven by heated debate about the fundamental mechanism of energy transfer among large scales. This book is a valuable tool for scientists and engineers interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering devices or devices.

Nonlinear Resonance Analysis - Elena Kartashova - 2010-10-21

Nonlinear resonances are a universal mathematical tool that can be used to study resonances in relation to, but independently of, any simple area of application. This is the first book to present nonlinear resonance analysis in relation to, but independently of, any simple area of application. This is the first book to present nonlinear resonance analysis in relation to, but independently of, any simple area of application. This is the first book to present nonlinear resonance analysis in relation to, but independently of, any simple area of application.
the theory and practice of optical interactions with the ocean. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing, and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.

Emergence of Incoherent Solitons and Shock-like Singularities in Optical Turbulence - Gao X - 2015

The thesis is devoted to the formation and propagation of incoherent solitons and shock-like singularities in the evolution of random wave fields. The travelling soliton solutions are derived for the laser plasma interaction. The solitons and shock waves and collapse singularities that manifest themselves in the spectral evolution of the random wave. Starting from the weak Langmuir turbulence formalism, we have derived a family of singular integro-differential kinetic equations which provide a detailed description of such incoherent singularities. We have also derived a generalised form of the weak Langmuir turbulence kinetic equation accounting for nonlinear dispersive effects. It offers a generalised structure to spectral incoherent solitons, and can also arrest the collapse-like spectral singularity. On the basis of the Vlasov formalism, we have shown that temporal incoherent solitons exhibit an unexpected long range interaction in the spectral domain, as well as a non-mutual interaction that can be either attractive or repulsive depending on their distance. Considering the strongly non-interaction regime (‘strong turbulence’), we have reported a remarkable characteristic transition of the spectra of the non-trivial solutions into a metastable state, and especially, an unexpected emergence of a giant collective incoherent shock wave. Experiments realized in thermal defocusing nonlinear media provided a signature of the transition.

Emergence of Incoherent Solitons and Shock-like Singularities in Optical Turbulence - Gao X - 2015

The thesis is devoted to the formation and propagation of incoherent solitons and shock-like singularities in the evolution of random wave fields. The travelling soliton solutions are derived for the laser plasma interaction. The solitons and shock waves and collapse singularities that manifest themselves in the spectral evolution of the random wave. Starting from the weak Langmuir turbulence formalism, we have derived a family of singular integro-differential kinetic equations which provide a detailed description of such incoherent singularities. We have also derived a generalised form of the weak Langmuir turbulence kinetic equation accounting for nonlinear dispersive effects. It offers a generalised structure to spectral incoherent solitons, and can also arrest the collapse-like spectral singularity. On the basis of the Vlasov formalism, we have shown that temporal incoherent solitons exhibit an unexpected long range interaction in the spectral domain, as well as a non-mutual interaction that can be either attractive or repulsive depending on their distance. Considering the strongly non-interaction regime (‘strong turbulence’), we have reported a remarkable characteristic transition of the spectra of the non-trivial solutions into a metastable state, and especially, an unexpected emergence of a giant collective incoherent shock wave. Experiments realized in thermal defocusing nonlinear media provided a signature of the transition.

The aim of this book is to describe the current status of optical remote sensing technology for ocean hydrodynamics, and to show that it is a powerful tool for monitoring oceanographic processes on a global scale. The book is divided into two parts: theory and practice. The theory part covers the basic principles of light interaction with the ocean, and the practical part describes how remote sensing can be used to monitor ocean processes. The book contains a selection of high quality papers that discuss the latest developments in the field of remote sensing for ocean hydrodynamics. These papers are grouped under the following headings: \(\text{S.P. Lin} \) .

Nuclear Physics B - 2019-03-04

In the lead paper of this book M. E. Goldstein describes an asymptotic theory of nonlinear interaction between two spatially growing oblique waves on nonparallel and boundary free-shear layers. The wave interaction originates from the nonlinear critical layer and is responsive to weakly nonparallel effects. The theory results in a system of integral differential equations which appear to be relevant near the upper branch of the neutral curve.

Nonlinear Instability of Nonparallel Flows - S.P. Lin - 2012-12-06

The Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers was held at Clarion University, Pontiac, MI 3698-7572, USA from 26 to 31 July 2013. It consisted of 9 general sessions, 30 seminars and 15 poster-sessions presentations. The papers were grouped in focused sessions on boundary layer, shear flows, vortex- and turbulent flow. All the papers were refereed by the symposium organizers and will be published in a special volume of the Journal of Fluid Mechanics. This symposium was supported by the NSF and the AIP. The next symposium will be held in 2016. The website of the next symposium is: www.icato.org.

Nonlinear Instability of Nonparallel Flows - S.P. Lin - 2012-12-06

This volume contains the contributions from the workshop on the theory and practice of optical interactions with the ocean. It provides a comprehensive account of the latest developments in this field, and is a valuable resource for researchers and practitioners in the field of optical remote sensing of the ocean and sea surface remote sensing.

Nuclear Physics B - 2019-03-04

The symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers was held at Clarion University, Pontiac, MI 3698-7572, USA from 26 to 31 July 2013. It consisted of 9 general sessions, 30 seminars and 15 poster-sessions presentations. The papers were grouped in focused sessions on boundary layer, shear flows, vortex- and turbulent flow. All the papers were refereed by the symposium organizers and will be published in a special volume of the Journal of Fluid Mechanics. This symposium was supported by the NSF and the AIP. The next symposium will be held in 2016. The website of the next symposium is: www.icato.org.
key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.

Encyclopedia of Nonlinear Science - Alwyn Scott - 2006-05-17

In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.

Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anisotropic fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four-semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.

Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anisotropic fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four-semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.

Extreme Ocean Waves - Elmir Pelinovsky - 2008-06-27

Extreme, freak or rogue waves are produced by a number of physical mechanisms that focus the water-wave energy into a small area, due to wave instability, chaotic behaviour, dispersion (frequency modulation), refraction (presence of variable currents or bottom topography), soliton interactions, etc. During the past thirty years a number of physical models of the rogue wave phenomenon have been intensively developed. Numerous experimental, statistical and theoretical investigations are intended to understand the physics of the huge wave formation, its relation to the environmental conditions and to provide a freak wave design for engineering purposes. The book details the vast progress that has been achieved in the understanding of the physical mechanisms of rogue wave phenomenon in recent years. The selected articles address such issues as the formation of freak waves due to modulational instability of nonlinear wave field, physical and statistical properties of rogue wave generation in deep water and in shallow water, various models of nonlinear water waves, special analysis of nonlinear resonances between water waves and the relation between observations and freak wave theories. The book is written for specialists in the fields of fluid mechanics, applied mathematics, nonlinear physics, physical oceanography and geophysics, and for students learning these subjects.

Nonlinear Wave Dynamics -

Nonlinear Wave Dynamics -

Progress in Nonlinear Quasilinear Green's Functions - Michael Bonitz - 2000

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory. Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonlinear quasilinear Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD. Authors include: Gordon Bayan, Pawel Danielewicz, Don Dubinov, Hartmut Haug, Klaus Henneberger, Anti-Pekka Jaatinen, Jim Kroll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.

Nonlinear Wave Dynamics -

Nonlinear Wave Dynamics -

Progress in Nonlinear Quasilinear Green's Functions - Michael Bonitz - 2000

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory. Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonlinear quasilinear Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD. Authors include: Gordon Bayan, Pawel Danielewicz, Don Dubinov, Hartmut Haug, Klaus Henneberger, Anti-Pekka Jaatinen, Jim Kroll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.

Homogeneous Turbulence Dynamics - Pierre Sagaut - 2018-05-26

This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magnetohydrodynamic turbulence and turbulence in non-Newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.

Homogeneous Turbulence Dynamics - Pierre Sagaut - 2018-05-26

This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magnetohydrodynamic turbulence and turbulence in non-Newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.